Name:	. Maths	Class:	***************************************
-------	---------	--------	---

SYDNEY TECHNICAL HIGH SCHOOL

Year 11

Extension 2 Mathematics

Assessment 1 HSC Course

December, 2014

Time allowed: 70 minutes

General Instructions:

- Questions are not of equal value
- Approved calculators may be used
- All necessary working should be shown
- Begin each question on a new page
- Write using black or blue pen
- Full marks may not be awarded for careless work or illegible writing

(a) Given that z = 2 + i and w = 1 - i find, in the form a + ib

2

- (i) $z\overline{w}$
- (ii) $Z/_{W}$
- (b) Shade the area where |z-1-i| < 2 and $0 < \arg(z-1-i) < \frac{\pi}{4}$ hold simultaneously.
- 3
- (c) In the diagram below, A, B and C are the points representing the complex numbers z_1 , z_2 , and z_3 respectively.

<ABC is a right angle, and AB = BC

- (i) Explain why $(z_1 z_2)^2 = -(z_3 z_2)^2$
- (ii) If ABCD is a square, find, in terms of z_1 , z_2 , and z_3 the complex number represented by the point D
- (d) Find the values of x and y if $(x + iy)^2 = 24 + 10i$

QUESTION 2: (11 Marks)

- (a) (i) Show that $z\bar{z} = |z|^2$
 - (ii) If $z = 2(\cos \theta + i\sin \theta)$ find $\overline{1-z}$ in terms of θ
 - (iii) Show that $Re\left(\frac{1}{1-z}\right) = \frac{1-2\cos\theta}{5-4\cos\theta}$

1

1

3

3

2

2

2

(b) In the circle below, <QPR = < SPR and <QRP = <SRP. It is NOT given that PR is a diameter.

Showing all working and reasoning, prove that PR is a diameter.

(c) If
$$x = 1 + i\sqrt{3}$$
 find the value of x^{11} in the form $a + ib$

QUESTION 3: (10 Marks)

- (a) (i) If $\alpha = -1 + i$, express α in mod-arg form.
 - (ii) Show that α satisfies the complex equation $z^4 + 4 = 0$
 - (iii) Hence, or otherwise, factorise $z^4 + 4$ into two Real quadratic factors
- (b) If n is an even positive integer, show, without multiplying out, that $(1 + x + x^2 + \cdots + x^n) \times (1 x + x^2 \cdots + x^n) = (1 + x^2 + \cdots + x^{2n})$

QUESTION 4: (11 Marks)

(ii)

(a) Two circles C_1 and C_2 intersect in the points A and B

AB is produced to the point P.

From the point P the tangents PT and PS are drawn as shown.

Redraw the diagram onto your answer sheet (no marks)

- (i) Prove that $\triangle ASP$ is similar to $\triangle SBP$
 - Hence prove that $SP^2 = AP \times PB$ (DO NOT USE THE INTERCEPT THEOREM) 1

2

- (iii) Deduce that PT = PS
- (iv) The perpendicular from S to SP meets the bisector of < SPT at D. 3

 Prove that DT passes through the centre of the circle C_2
- (b) (i) How many terms are there in the geometric series $2^{N} + 2^{N-1} + 2^{N-2} \dots + 2^{1-N} + 2^{-N} , \text{ if N is a positive integer?}$
 - (ii) Prove that $2^{N} + 2^{N-1} + 2^{N-2} \dots + 2^{1-N} + 2^{-N} = 2^{N+1} 2^{-N}$
 - (iii) As $N \to \infty$, is there a limiting sum to this series? Justify your answer.

EXAMINERS' COMMENTS - EXTENSION 2 Paper, December 2014

QUESTION 1:

- (b) Too many did not recognise that |z 1 i| < 2 was a circle
- (c) Adding vectors does not produce the same answer as adding co-ordinates. This is the VECTOR you get when you add, $\rightarrow RA$ to $\rightarrow RC$

le the vector BD

(d) Too many students left their answers as x = 5 and y = 1. For multiple solutions you need to separate the cases. le $\{x = 5 \text{ and } \{x = -5 \text{ } \}$

$$\{y = 1 | \{y = -1\}$$

QUESTION 2:

- (a) (i) Recognise that the conjugate is between Real and Imaginary, not between the bit containing sine and cosine.
 - (ii) It was made easier when (i) and (ii) lead you into (iii) (NOTE this HAS been said to you before in Examiners' comments), and that $(1-2\cos\theta+2i\sin\theta)(1-2\cos\theta-2i\sin\theta)=(1-2\cos\theta)^2+2\sin\theta^2$
- (b) Setting out!, setting out! Setting out! (and NO ESSAYS!)
- (c) Do not leave the question in "cis" form

QUESTION 3:

- (a) Again, if there are multiple parts (i) (ii) (iii) they are used to help each other
- (b) Most students failed to recognise HOW MANY terms there were. le n+1 not n terms

QUESTION 4:

- (a) (ii) To gain the mark you HAD to state the reason for giving the ratio of the sides (ie that they were corresponding sides in similar triangles)
 - (ii) The word DEDUCE is important. It doesn't mean you had to entirely redo the question. The mathematical term, "similarly" means it follows the same proof as the previous part. (NOTE: Using PT = PS because they are tangents from an external point ONLY works for the one circle, not different circles)
 - (iii) It is no good assuming that D is the centre of the bottom circle —n this is what you are trying to prove. Similar arguments apply to the use of cyclic quadrilaterals, and stating that the tangent hits a radius at right angles. These are both really what you are out to prove.
- (b) Why didn't more people get this right? Algebra skills are poor, because this was NOT a difficult question, even though the N and the n may have confused people.
 - (iii) As the ratio is $\frac{1}{2}$ there should be an infinite sum. But the sum is $2^{N+1} 2^{-N}$ will go to infinity even though the second part will go to zero)